CSC/CPE 540 Theory of Computation II

1. CSC/CPE 540 Theory of Computation II

2. credit units 4 contact hours 4

3. Course Coordinator: Hasmik Gharibyan

4. Textbook: (and/or other required material) no required textbook

5. a. Course Description: Advanced topics in theoretical computer science from such areas as automata theory, cellular automata theory, computational complexity, and program verification. 4 seminars.

 b. Prerequisite: CSC 445 and graduate standing, or consent of instructor.

 c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

<table>
<thead>
<tr>
<th>Required/Elective/Selective Elective for CPE, CSC, EE, SE</th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Selective Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. a. Course Learning Objectives

 The student will be able to:
 • Analyze and explain advanced topics in theory of computation.
 • Discuss different applications of computational theory to practical design not only in the CS field but in other disciplines as well.
 • Evaluate classical, as well as current research papers on different topics in theoretical computer science.
 • Critique texts/papers on advanced topics in theoretical computer science.
 • Present topics in theoretical computer science to an audience of peers.

 b. Level at which Student Outcomes are addressed

 (“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SE/CPE</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

7. Major Topics Covered: (number of lecture hours each)

 • Theory of languages and automata; its applications in different disciplines.
 • Turing machines and their use as a model of computation in different disciplines.
 • Other types of abstract machines (e.g. cellular automata); their properties and applications.
 • Computational complexity, complexity classes, NP-completeness.
 • Undecidable problems, uncomputable functions.

 Note: This is a seminar class. For their presentations students choose papers from a provided list. Thus in different quarters the time spent on each topic may vary.