CSC 448 – Bioinformatics Algorithms

1. CSC 448 – Bioinformatics Algorithms

2. credit units 4 contact hours 6

3. Course Coordinator: Alex Dekhtyar

5. a. Course Description:
 Introduction to the use of computers to solve problems in molecular biology. The algorithms, languages, and databases important in determining and analyzing nucleic and protein sequences and their structure. 3 lectures, 1 laboratory.

 b. Prerequisite: CSC 349.

 c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

<table>
<thead>
<tr>
<th></th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Selective Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. a. Course Learning Objectives
 The student will be able to:

 - Explain the main problems in the field of bioinformatics and computational molecular biology
 - Articulate and implement the key algorithms used to solve computational biology and bioinformatics problems
 - Model computational biology problems
 - Apply algorithmic techniques to solve problems in computational biology and bioinformatics
 - Work on software projects in multidisciplinary teams

 b. Level at which Student Outcomes are addressed
 (“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)
7. **Major Topics Covered: (number of lecture hours per)**
 - Introduction to Bioinformatics (3 hours)
 - Statistical Analysis of DNA (3 hours)
 - Exact Sequence Matching (6 hours)
 - Palindrome detection (2 hours)
 - Genome Alignment (6 hours)
 - Clustering (3 hours)
 - Gene Prediction (3 hours)
 - Review and advanced topics (4 hours)