CSC 424 – Software Security

1. CSC 424 – Software Security

2. credit units 4 contact hours 6

3. Course Coordinator: Zachary Peterson

4. Textbook (or other required material): Building Secure Software by Viega and McGraw. Select readings from the research literature.

5. a. Course Description: Principles behind secure software design including threat models, trust management, common vulnerabilities and mitigation techniques, robust software development, isolation of untrusted code, auditability, and testing. 3 lectures, 1 laboratory.

 b. Prerequisite: CSC321; CSC 307 or CSC 309

 c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

	CSC	CPE	SE
Required			
Elective	X	X	X
Selective Elective			

6. a. Course Learning Objectives

 The student will be able to:
 - Evaluate the security risks inherent in the development of a software system
 - Identify assumptions of trust and vulnerabilities within a software system
 - Identify and apply standards for secure software development.
 - Select and apply appropriate techniques for mitigating vulnerabilities
 - Generate and clearly communicate appropriate security requirements for a software system
 - Evaluate the security status of a given software system

 b. Level at which Student Outcomes are addressed
 (“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

1	2	3	4	5	6	7
A	A	I	I	A	A	N/A
A	I	I	I	A	I	A

7. Major Topics Covered: (number of lecture hours per)
The process execution environment (process model, libraries, etc.), Programs as data (3)
Principles of secure software design (3)
Canonical software failures: control flow hijacking, race conditions, time of check time of use violations, pseudorandomness, side channels and other information leakage (6)
Mitigation techniques: input sanitization, authentication, propose use of cryptography (3)
Code correctness: Code reviews and audits, static and dynamic code analysis tools, formal methods and proofs of correctness (4)
Secure software engineering practices and managing risk (3)
Evaluation, Certification and Standards: Common Criteria, SOX, NIST (2)