CSC 366 – Database Modeling, Design, and Implementation

1. CSC 366 – Database Modeling, Design, and Implementation

2. Credit units 4 Contact hours 6

3. Course Coordinator: Alex Dekhtyar

5. a. Course Description:
The database modeling problem. Database modeling levels: external, conceptual, logical and physical. Database models: entity-relationship, relational, object-oriented, semantic, and object-relational. Normal forms. Distributed database design. Functional analysis of database applications and transaction specification, design, and implementation. 3 lectures, 1 laboratory.

b. Prerequisite: CSC 365.

c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

<table>
<thead>
<tr>
<th></th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Selective Elective</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

6. a. Course Learning Objectives
The student will be able to:
- Recall existing data models, design methodology, algorithms and properties of various data models.
- Explain the database design theory and principles and interpret them in the context of practical design requirements.
- Apply design theory to practical database design problems
- Analyze database requirements; categorize design requirements into database abstraction levels (conceptual, logical and physical)
- Combine the elements of various data models to create new designs based on a set of requirements.
- Apply design trade-offs to database design problems
b. **Level at which Student Outcomes are addressed**

(“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>I</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>N/A</td>
</tr>
<tr>
<td>SE/CPE</td>
<td>I</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

7. **Major Topics Covered: (number of lecture hours per)**

- **Introduction and Review (2)**
 - DBMS objectives and services
 - Application Development using DBMS
 - Database levels of data abstraction
 - Data model components
 - Database modeling requirements
 - Database life cycle

- **Conceptual Database Modeling (6)**
 - Data and Process modeling
 - Extended ER Model Design
 - Generalization, Aggregation, Abstraction, Hierarchies
 - N-ary Relationships
 - ER Model Integrity constraints
 - Retrieval and update operations
 - ER Modeling vs OO Database Modeling
 - Semantic Object Modeling

- **External-Level Design (4)**
 - Application requirements analysis
 - Database requirements analysis
 - Transaction specification
 - External view modeling
 - External view integration, merging and restructuring
 - Entity clustering
 - View updates

- **Logical Relational Database Design (5)**
 - Review of First, Second, and Third Normal Forms
 - Boyce-Codd Normal Form (BCNF)
 - Construction of 3NF and BCNF minimal cover
 - Fourth and Fifth Normal Form

- **Mapping ER Models to Relational Models (3)**
 - Transformation Rules for entities and relationships
 - Automatic generation of SQL DDL code
 - Design Tools

- **Physical Database Design (5)**
 - File Structures, Indexes
• Access Paths Selection
• De-normalization
• Join Strategies
• Performance measurement, monitoring and database tuning

• Introduction to Distributed Database Design (3)
 • Global Schema Design
 • Data allocation strategies
 • Fragmentation
 • Replication
 • Distributed transactions