CSC 348 – Discrete Structures

1. CSC 348 – Discrete Structures

2. **credit units** 4 **contact hours** 4

3. **Course Coordinator**: Ignatios Vakalis

4. **Textbook (or other required material)**: Discrete Mathematics and Its Applications, Kenneth Rosen

5. a. **Course Description**: Structures of computer science: logic, sets, relations, functions, graphs and trees. Propositional and predicate logic. Applications of predicate logic to preconditions, postconditions, and proof techniques. Complexity of algorithms. Not open to students with credit in CSC 141. 4 lectures.

 b. **Prerequisite**: CSC/CPE 102 and CSC/CPE 103, with a grade of C- or better or consent of instructor, or **CSC/CPE 202** and **CSC/CPE 203**, with a grade of C- or better or consent of instructor.

 c. **Required/Elective/Selective Elective for CPE, CSC, EE, SE**

<table>
<thead>
<tr>
<th></th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. a. **Course Learning Objectives**

 The student will be able to:
 - Apply formal methods of symbolic propositional and predicate logic.
 - Formulate formal logic proofs and apply logical reasoning to solve problems.
 - Determine which type of proof is best for a given problem.
 - Explain, with examples, the basic terminology of functions, relations, and sets.
 - Perform the operations associated with sets, functions, and relations.
 - Explain the asymptotic behavior of functions describing time complexity.
 - Demonstrate basic counting principles.
 - Solve recurrence equations.
 - Illustrate, by example, the basic terminology of graph theory.
 - Model problems in computer science using graphs and trees.
b. **Level at which Student Outcomes are addressed**
 (“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SE/</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>CPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. **Major Topics Covered: (number of lecture hours per)**
 - Propositions and predicates, logic and proofs (4)
 - Sets, functions, operations on sets and functions (3)
 - Proof techniques (5)
 - Sequences (1)
 - Intro to combinatorics: counting techniques, permutations and combinations, pigeon hole principle (5)
 - Relations, classification of relations (2)
 - Complexity of algorithms asymptotic notation (big theta, oh and omega) (3)
 - Intro to recursive algorithms; Elementary Solution methods for recurrence relations (5)
 - Graphs: paths and cycles, Euler cycle, Hamiltonian cycle, graph isomorphism, planar graphs, breadth first and depth first search algorithms (4)
 - Trees: rooted trees, binary search trees (3)