CSC 307 – Introduction to Software Engineering

1. CSC 307 - Introduction to Software Engineering

2. **credit units** 4 **contact hours** 6

3. **Course Coordinator:** Davide Falessi

4. **Textbook:** Slides and other online material provided by instructor

5. a. **Course Description:** Requirements, specification, design, implementation, testing and verification of large software systems. Study and use of the software process and software engineering methodologies; working in project teams. 3 lectures, 1 laboratory.

 b. **Prerequisite:** CSC 141 or CSC 348; and CPE/CSC 357.

 c. **Required/Elective/Selectibe Elective for CPE, CSC, EE, SE**

<table>
<thead>
<tr>
<th></th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>X (or 308/309)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Selective Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. a. **Course Goals/Outcomes**

 The student will be able to:
 - Explain the basic concepts of software engineering and the software development process
 - Employ methodological techniques for each of the following software process activities:
 - Requirements: functional requirements, use cases, user stories, non-functional requirements, requirements elicitation from customer, requirements prioritization, requirements estimation, handling requirements changes.
 - Design: Model specification and design: UML Class diagram, Use-case diagram. User Interface prototyping. Graphical User Interface (e.g., JavaFX). Decision-making and trade-offs. Design patterns.
 - Coding: Use of a static analyzers (e.g., SonarCloud)
 - Continuous integration (e.g., Travis or Jenkins)
 - Issue tracking (e.g., JIRA or GitHub).
 - Version control (e.g., Git or SVN).
 - Testing: Unit-testing with framework (e.g. JUnit), Functional testing, Inspections, System testing, Integration testing, Regression testing, Acceptance testing, Coverage, GUI testing.
 - Use these methodological techniques in an environment where one can obtain ample feedback
 - Develop a specification for a moderate-sized, realistic software system
• Practice oral and written technical communication skills
• Practice the art of working effectively in a technical project team
• Use state-of-the-art tools for computer-aided software engineering

b. **How Student Outcomes addressed**
 (“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>B</td>
<td>A</td>
<td>I</td>
<td>I</td>
<td>B</td>
<td>A</td>
<td>N/A</td>
</tr>
<tr>
<td>SE/CPE</td>
<td>I</td>
<td>A</td>
<td>I</td>
<td>I</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

7. **Major Topics Covered: (number of lecture hours each)**
 • Requirements (9)
 • Design (6)
 • Coding (3)
 • Continuous integration (1)
 • Issue Tracking (1)
 • Version Control (1)
 • Testing (9)