CSC/CPE 480 Artificial Intelligence

1. CSC/CPE 480 Artificial Intelligence

2. credit units 4 contact hours 6

3. Course Coordinator: Franz Kurfess

5. a. Course Description: Programs and techniques that characterize artificial intelligence. Programming in a high level language. 3 lectures, 1 laboratory. Crosslisted as CPE/CSC 480.

b. Prerequisite: CSC/CPE 103 with a grade of C- or better.

c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

<table>
<thead>
<tr>
<th>Required</th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective Elective</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

6. a. Course Goals/Outcomes
 The student will be able to:
 - Know classic examples of artificial intelligence
 - Know characteristics of programs that are "intelligent"
 - Understand the use of heuristics
 - Know a variety of ways to represent and search for information
 - Know the fundamentals of programming Artificial Intelligence problems in a high-level programming language
 - Consider ideas and issues associated with social, technical, and ethical uses of machines that involve "artificial" intelligence

 b. How Student Outcomes addressed
 (“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

<table>
<thead>
<tr>
<th>3a</th>
<th>3b</th>
<th>3c</th>
<th>3d</th>
<th>3e</th>
<th>3f</th>
<th>3g</th>
<th>3h</th>
<th>3i</th>
<th>3j</th>
<th>3k</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>I</td>
<td>I</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE/CPE</td>
<td>I</td>
<td>I</td>
<td></td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Major Topics Covered: (number of lecture hours each)
 - Introduction and history of A.I. (3)
 - Intelligent Agents (3)
Problem Solving by Search: depth-first, breadth-first, iterative deepening, best-first, A*, iterative deepening A*, SMA*, hill climbing, simulated annealing, some efficiency and complexity work (6)

Game Playing: comparison of human to machine approaches, minimax procedure, alpha-beta pruning, effectiveness of alpha-beta pruning, state-of-the-art in specific games (3)

Knowledge and Reasoning: classifications of knowledge, representations, logic, inference, propositional logic and applications, prepositional logic and applications, resolution, theorem proving, question & answers (6)

Learning: basic concepts, categorization and decision trees, induction of decision trees from data sets, neural networks, backpropagation method, (6)

Future of A.I. and conclusions (3)