CSC/CPE 471 Introduction to Computer Graphics

1. CSC/CPE 471 Introduction to Computer Graphics

2. credit units 4
 contact hours 6

3. Course Coordinator: Zoe Wood

4. Textbook:(and/or other required material)
 Peter Shirley, “Fundamentals of Computer Graphics”

5. a. Course Description:
 Graphics software development and use of APIs for 3D graphics.
 The graphics pipeline, modeling, geometric and viewing transforms, lighting and shading, rendering, interaction techniques and graphics hardware. 3 lectures, 1 laboratory. Crosslisted as CPE/CSC 471.

 b. Prerequisite: CSC/CPE 357.

 c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

<table>
<thead>
<tr>
<th>Required</th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective Elective</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

6. a. Course Goals/Outcomes
 The student will be able to:
 - Gain a working as well as a theoretical knowledge of CG hardware and algorithms, as well as experience in the use of a major toolkit (currently OpenGL). The course is taught from a tool builder’s point of view; with a focus on the mathematical foundations necessary to support interactive three dimensional graphics applications.

 b. How Student Outcomes addressed
 (“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

<table>
<thead>
<tr>
<th>3a</th>
<th>3b</th>
<th>3c</th>
<th>3d</th>
<th>3e</th>
<th>3f</th>
<th>3g</th>
<th>3h</th>
<th>3i</th>
<th>3j</th>
<th>3k</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>A</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE/CPE</td>
<td>A</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Major Topics Covered: (number of lecture hours each)
 - The graphics pipeline (4.5 hours): Geometry front end; Raster back end
 - Modeling objects (3 hours)
 - Points, lines, polygons, and planes
 - Smooth surfaces
 - Triangle meshes (indexed face sets)
 - Volumes
- Constructive Solid Geometry
 - Curves

- Modeling transformations (4 hours)
 - Translation, rotation, and scale
 - Composition of transformations
 - Hierarchical modeling
 - Trivial clip of objects

- Illumination (2.5 hours)
 - Diffuse and specular reflectance (1.5 hours)
 - The Phong lighting model (.5 hours)
 - Fast cosines and normals (.5 hours)

- Projection (2.0 hours): Perspective and parallel; The viewing transformation, & virtual camera

- Clipping to the screen (1.0 hours): Sutherland-Hodgeman clipping

- Scan-conversion of primitives (2.0 hours): Scan-converting polygons; Scan-converting points and lines

- Hidden-surface removal (1.0 hours): Z-buffering; Other methods: Painter's, Warnock's algorithm, and BSP trees

- Shading (3 hours)
 - Flat shading
 - Gouraud shading
 - Phong shading
 - Raytracing and radiosity
 - Texture mapping

- Perception (1 hours): The human visual system (0.5 hours); Color systems: RGB cube, HSV, YIQ, CIE (0.5 hours)

- The GPU (2.5 hours): General organization of the GPU, including programming the GPU via shaders

- Advanced topics (1 hour): animation, geometric modeling, advanced rendering