CPE 419 Applied Parallel Computing

1. **CPE 419 Applied Parallel Computing**

2. **credit units** 4 **contact hours** 6

3. **Course Coordinator**: Chris Lupo

5. **a. Course Description**: Introduction to applied parallel computing paradigms: software models, resource allocation, performance measurement, and data sharing. Emphasis on massively parallel computation and performance improvement for a real-world application of significant scope. 3 lectures, 1 laboratory.

 b. Prerequisite: CPE 357; Corequisite: CSC 141 or CSC 348; Recommended: CPE 315

 c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

<table>
<thead>
<tr>
<th></th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Selective Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. **a. Course Goals/Outcomes**
 The student will be able to:
 - Analyze applications that benefit from massive amounts of parallelism.
 - Discuss, evaluate, and use contemporary parallel programming paradigms and the systems on which they are used.
 - Construct and evaluate programs using GPU computing hardware and programming models
 - Analyze and measure performance of modern parallel computing systems
 - Analyze the impact of communication latency and resource contention on throughput.
 - Demonstrate mastery of basic and intermediate parallel computation with GPU programming models.

 b. How Student Outcomes addressed
 (“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>A</td>
<td>A</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SE/CPE</td>
<td>A</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>A</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

7. **Major Topics Covered**: (number of lecture hours each)
• Introduction to parallel computing
• Parallel programming models
• Memory performance models
• Performance analysis tools, profiling
• Thread model, threading hardware
• Memory hardware, Hierarchical memories
• Memory conflicts, Atomic operations
• Control flow