CSC/CPE 366 Database Modeling, Design, and Implementation

1. CSC/CPE 366 Database Modeling, Design, and Implementation

2. credit units 4 contact hours 6

3. Course Coordinator: Alexander Dekhtyar

b. Prerequisite: CSC/CPE 365.

c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

<table>
<thead>
<tr>
<th></th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective Elective</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

6. a. Course Goals/Outcomes

The student will be able to:

- Knowledge: Student to recall specific information.
 Know existing data models, design methodology, algorithms and properties of various data models.

- Comprehension: Student to interpret the information.
 Understand the database design theory and principles and interpret them in the context of practical design requirements.

- Application: Student to use abstractions in new situations.
 Apply design theory to practical database design problems

- Analysis: Student to separate a complex whole into its parts.
 Database requirements analysis, separation of design requirements into database abstraction levels (conceptual, logical and physical)

- Synthesis: Student to combine elements to form an original entity.
 Combine the elements of various data models to create new designs based on a set of requirements.

- Evaluation: Student must choose from alternatives in making a judgment.
Understand an apply design trade-offs to database design problems

- The primary goal of this course is to prepare students for graduate work in database design theory and for industry work in application software development, requiring the use of a database system.

b. **How Student Outcomes addressed**
 ("B" = Basic level, "I" = Intermediate level, "A" = Advanced level)

<table>
<thead>
<tr>
<th></th>
<th>3a</th>
<th>3b</th>
<th>3c</th>
<th>3d</th>
<th>3e</th>
<th>3f</th>
<th>3g</th>
<th>3h</th>
<th>3i</th>
<th>3j</th>
<th>3k</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>I</td>
<td>I</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE/CPE</td>
<td>I</td>
<td>I</td>
<td>A</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

7. **Major Topics Covered: (number of lecture hours each)**

- Introduction and Review (2)
 - DBMS objectives and services
 - Application Development using DBMS
 - Database levels of data abstraction
 - Data model components
 - Database modeling requirements
 - Database life cycle
- Conceptual Database Modeling (6)
 - Data and Process modeling
 - Extended ER Model Design
 - Generalization, Aggregation, Abstraction, Hierarchies
 - N-ary Relationships
 - ER Model Integrity constraints
 - Retrieval and update operations
 - ER Modeling vs OO Database Modeling
 - Semantic Object Modeling
- External-Level Design (4)
 - Application requirements analysis
 - Database requirements analysis
 - Transaction specification
 - External view modeling
 - External view integration, merging and restructuring
 - Entity clustering
 - View updates
- Logical Relational Database Design (5)
 - Review of First, Second, and Third Normal Forms
 - Boyce-Codd Normal Form (BCNF)
 - Construction of 3NF and BCNF minimal cover
 - Fourth and Fifth Normal Form
- Mapping ER Models to Relational Models (3)
 - Transformation Rules for entities and relationships
 - Automatic generation of SQL DDL code
- Design Tools
 - Physical Database Design (5)
 - File Structures, Indexes
 - Access Paths Selection
 - De-normalization
 - Join Strategies
 - Performance measurement, monitoring and database tuning
 - Introduction to Distributed Database Design (3)
 - Global Schema Design
 - Data allocation strategies
 - Fragmentation
 - Replication

Distributed transactions