

2. credit units 4 contact hours 6

3. **Course Coordinator**: Zoë Wood

4. **Textbook (or other required material)**: None

5. **a. Course Description**: Basic and advanced algorithms for real-time, interactive, 3D graphics software. Modeling (polygon mesh, height field, scene graph), real-time rendering and shading (visibility processing, LOD, texture and light maps), collision detection (bounding volumes, complexity management), interactive controls, multi-player game technology, game engine architecture. 3 lectures, 1 laboratory. Crosslisted as CPE/CSC 476.

 b. Prerequisite: CSC/CPE 471.

 c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

<table>
<thead>
<tr>
<th>Required</th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Selective Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. **a. Course Learning Objectives**
 The student will be able to:
 - Describe and evaluate the graphics pipeline and the basic implementation of the pipeline in modern hardware (and graphics libraries)
 - Articulate programmatic choices related to geometry in real-time games; use basic vocabulary, demonstrate general computation, and compare the tradeoffs of:
 - Various spatial data structures
 - Various culling algorithms
 - Various geometric representations (polygonal, volume, parametric, etc.)
 - Articulate programmatic choices related to lighting and shading in real-time games; use basic vocabulary, demonstrate general computation, and compare the tradeoffs of:
 - Various global illumination algorithms (i.e., shadow algorithms, ambient occlusion, etc.)
 - Various BRDFs and deferred shading
 - Related technologies, including texture mapping and framebuffers
 - Articulate programmatic choices related to animation in real-time games; use basic vocabulary, demonstrate general computation, and compare the tradeoffs of:
 - Introductory physically-based modeling
• Character animation (specifically skinned meshes)
 • Program a basic game with multiple moving components and interaction, shadow mapping, view frustum culling, and two advanced graphics technologies from a provided list.
 • Write a large C++ real-time computer graphics application either as an individual or on a team and experience the joy of software engineering while working on a larger quarter-long project.

b. Level at which Student Outcomes are addressed
 (“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>A</td>
<td>A</td>
<td></td>
<td>A</td>
<td>A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SE/</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>CPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Major Topics Covered: (number of lecture hours per)
 • Graphics pipeline review (2 hours)
 • Geometry in games (8 hours)
 • Animation basics (3 hours)
 • Spatial data structures (3 hours)
 • Illumination and rendering (8 hours)
 • Visual effects (3 hours)