CPE/CSC 471 – Introduction to Computer Graphics

1. CPE/CSC 471 – Introduction to Computer Graphics

2. credit units 4 contact hours 6

3. Course Coordinator: Zoë Wood

4. Textbook (or other required material):
 Peter Shirley, “Fundamentals of Computer Graphics”

5. a. Course Description:
 Graphics software development and use of application programming interfaces for 3D
 graphics. The graphics pipeline, modeling, geometric and viewing transforms, lighting and
 shading, rendering, interaction techniques and graphics hardware. 3 lectures, 1 laboratory.
 Crosslisted as CPE/CSC 471.

 b. Prerequisite: CPE/CSC 357.

 c. Required/Elective/Selective Elective for CPE, CSC, EE, SE

<table>
<thead>
<tr>
<th>Required</th>
<th>CSC</th>
<th>CPE</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Selective Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. a. Course Learning Objectives
 The student will be able to:
 • Describe the graphics pipeline (algorithms) and the basic implementation of the pipeline
 in modern hardware (and graphics libraries)
 • Describe and apply coordinate transforms and affine transformations and understand the
 application of such transforms using a vertex shader
 • Describe and apply basic geometric computations involving points, lines, planes and
 triangles related to spatial queries
 • Program basic data structures to represent a mesh (including applying transforms and
 necessary data for shading)
 • Describe and implement rasterization (algorithm, stage in the graphics pipeline, and
 relationship to fragment shaders)
 • Describe and implement basic hierarchical animation
 • Describe and compute local shading models (Blinn-Phong, etc.)
 • Describe and apply basic texture mapping
 • Identify the application of more advanced computer graphics (including rendering,
 animation, real time and visualization)
 • Translate mathematics (linear algebra and vector computations) into a higher level
 programming language
 • Use a major graphics toolkit/API to implement a program that builds an interactive 3D
 computer program
b. Level at which Student Outcomes are addressed
(“B” = Basic level, “I” = Intermediate level, “A” = Advanced level)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
<td>I</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>SE/ CPE</td>
<td>A</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

7. Major Topics Covered: (number of lecture hours per)

- The graphics pipeline (4.5 hours): Geometry front end; Raster back end
 - Modeling objects (3 hours)
 - Points, lines, polygons, and planes
 - Smooth surfaces
 - Triangle meshes (indexed face sets)
 - Volumes
 - Curves
- Modeling transformations (4 hours)
 - Translation, rotation, and scale
 - Composition of transformations
 - Hierarchical modeling
- Illumination and Shading (5 hours)
 - Diffuse and specular reflectance (2 hours)
 - The Blinn-Phong lighting model (1 hour)
 - Geometry and normals (.5 hours)
 - Texturing (1 hour)
- Projection (1.5 hours): Perspective and parallel; The viewing transformation, & virtual camera
- Clipping to the screen (1.0 hours)
- Rasterization/Scan-conversion of primitives (2.0 hours): Barycentric Coordinates triangle rasterization
- Hidden-surface removal (1.0 hours): Z-buffering
- Perception: The human visual system (0.5 hours)
- The GPU (2.5 hours): General organization of the GPU, including programming the GPU via shaders
- Advanced topics (1 hour): animation, geometric modeling, advanced rendering